代数学I 下载 115盘 pdf snb 夸克云 tct kindle azw3

代数学I电子书下载地址
内容简介:
范德瓦尔登的《代数学》是现代数学的一部奠基之作,这部书不仅对提高数学家的学识修养有很大意义,对现代数学如扑拓学、泛函分析等以及一些其他科学领域也有重要影响。全书共分两卷,本书是第一卷,分成11章:前5章以最小的篇幅包括了为所有其余各章作准备的知识,即有关集合、群、环、域、向量空间和多项式的最基本的概念;其余各章主要讲述交换域的理论,包括Galois理论和实域。
目录
引言
第1章 数与集合
1.1 集合
1.2 映射,势
1.3 自然数序列
1.4 有限与可数集合
1.5 分类
第2章 群
2.1 群的概念
2.2 子群
2.3 群子集的运算,陪集
2.4 同构与自同构
2.5 同态,正规子群,商群
第3章 环与域
3.1 环
3.2 同态与同构
3.3 商的构成
3.4 多项式环
3.5 理想,同余类环
3.6 整除性,素理想
3.7 Euclid环与主理想环
3.8 因子分解
第4章 向量空间和张量空间
4.1 向量空间
4.2 维数不变性
4.3 对偶向量空间
4.4 体上的线性方程组
4.5 线性变换
4.6 张量
4.7 反对称双线性型与行列式
4.8 张量积,缩并与迹
第5章 多项式
5.1 微分法
5.2 多项式的零点
5.3 内插公式
5.4 因子分解
5.5 不可约性判定标准
5.6 因子分解在有限步下的完成
5.7 对称函数
5.8 两个多项式的结式
5.9 结式作为根的对称函数
5.10 有理函数的部分分式分解
第6章 域论
6.1 子体,素体
6.2 添加
6.3 单纯域扩张
6.4 域的有限扩张
6.5 域的代数扩张
6.6 单位根
6.7 Galois域(有限域)
6.8 可分与不可分扩张
6.9 完全域及不完全域
6.10 代数扩张的单纯性,本原元素定理
6.11 范数与迹
第7章 群论续
7.1 带算子的群
7.2 算子同构和算子同态
7.3 两个同构定理
7.4 正规群列与合成群列
7.5 pn阶群
7.6 直积
7.7 群的特征标
7.8 交错群的单纯性
7.9 可迁性与本原性
第8章 Galois理论
8.1 Galois群
8.2 Galois理论的基本定理
8.3 共轭的群、域与域的元素
8.4 分圆域
8.5 循环域与纯粹方程
8.6 用根式解方程
8.7 n次一般方程
8.8 二次、三次与四次方程
8.9 圆规与直尺作图
8.10 Galois群的计算,具有对称群的方程
8.11 正规基
第9章 集合的序与良序
9.1 有序集合
9.2 选择公理与Zorn引理
9.3 良序定理
9.4 超限归纳法
第10章 无限域扩张
10.1 代数封闭域
10.2 单纯超越扩域
10.3 代数相关性与无关性
10.4 超越次数
10.5 代数函数的微分法
第11章 实域
11.1 有序域
11.2 实数的定义
11.3 实函数的零点
11.4 复数域
11.5 实域的代数理论
11.6 关于形式实域的存在定理
11.7 平方和
索引
书籍目录:
《代数学I》目录:
引言
第1章 数与集合
1.1 集合
1.2 映射,势
1.3 自然数序列
1.4 有限与可数集合
1.5 分类
第2章 群
2.1 群的概念
2.2 子群
2.3 群子集的运算,陪集
2.4 同构与自同构
2.5 同态,正规子群,商群
第3章 环与域
3.1 环
3.2 同态与同构
3.3 商的构成
3.4 多项式环
3.5 理想,同余类环
3.6 整除性,素理想
3.7 Euclid环与主理想环
3.8 因子分解
第4章 向量空间和张量空间
4.1 向量空间
4.2 维数不变性
4.3 对偶向量空间
4.4 体上的线性方程组
4.5 线性变换
4.6 张量
4.7 反对称双线性型与行列式
4.8 张量积,缩并与迹
第5章 多项式
5.1 微分法
5.2 多项式的零点
5.3 内插公式
5.4 因子分解
5.5 不可约性判定标准
5.6 因子分解在有限步下的完成
5.7 对称函数
5.8 两个多项式的结式
5.9 结式作为根的对称函数
5.10 有理函数的部分分式分解
第6章 域论
6.1 子体,素体
6.2 添加
6.3 单纯域扩张
6.4 域的有限扩张
6.5 域的代数扩张
6.6 单位根
6.7 Galois域(有限域)
6.8 可分与不可分扩张
6.9 完全域及不完全域
6.10 代数扩张的单纯性,本原元素定理
6.11 范数与迹
第7章 群论续
7.1 带算子的群
7.2 算子同构和算子同态
7.3 两个同构定理
7.4 正规群列与合成群列
7.5 pn阶群
7.6 直积
7.7 群的特征标
7.8 交错群的单纯性
7.9 可迁性与本原性
第8章 Galois理论
8.1 Galois群
8.2 Galois理论的基本定理
8.3 共轭的群、域与域的元素
8.4 分圆域
8.5 循环域与纯粹方程
8.6 用根式解方程
8.7 n次一般方程
8.8 二次、三次与四次方程
8.9 圆规与直尺作图
8.10 Galois群的计算,具有对称群的方程
8.11 正规基
第9章 集合的序与良序
9.1 有序集合
9.2 选择公理与Zorn引理
9.3 良序定理
9.4 超限归纳法
第10章 无限域扩张
10.1 代数封闭域
10.2 单纯超越扩域
10.3 代数相关性与无关性
10.4 超越次数
10.5 代数函数的微分法
第11章 实域
11.1 有序域
11.2 实数的定义
11.3 实函数的零点
11.4 复数域
11.5 实域的代数理论
11.6 关于形式实域的存在定理
11.7 平方和
索引
作者介绍:
Bartel Leendert van der Waerden (February 2, 1903, Amsterdam, Netherlands – January 12, 1996, Zürich, Switzerland) was a Dutch mathematician.
Van der Waerden learned advanced mathematics at the University of Amsterdam and the University of Göttingen, from 1919 until 1926. He was much influenced by Emmy Noether at Göttingen. Amsterdam awarded him a Ph.D. for a thesis on algebraic geometry, supervised by Hendrick de Vries. Göttingen awarded him the habilitation in 1928.
In his 27th year, Van der Waerden published his Algebra, an influential two-volume treatise on abstract algebra, still cited, and perhaps the first treatise to treat the subject as a comprehensive whole. This work systematized an ample body of research by Emmy Noether, David Hilbert, Richard Dedekind, and Emil Artin. In the following year, 1931, he was appointed professor at the University of Leipzig.
The Third Reich made life difficult for Van der Waerden as a foreigner teaching in Germany, but he refused to give up his Dutch nationality. He filled the chair in mathematics at the University of Amsterdam, 1948–1951, then moved to the University of Zurich, where he spent the rest of his career, supervising more than 40 Ph.D. students.
Van der Waerden is mainly remembered for his work on abstract algebra. He also wrote on algebraic geometry, topology, number theory, geometry, combinatorics, analysis, probability and statistics, and quantum mechanics (he and Heisenberg had been colleagues at Leipzig). In his later years, he turned to the history of mathematics and science. His historical writings include Ontwakende wetenschap (1950), which was translated into English as Science Awakening (1954), Geometry and Algebra in Ancient Civilizations (1983), and A History of Algebra (1985).
出版社信息:
暂无出版社相关信息,正在全力查找中!
书籍摘录:
暂无相关书籍摘录,正在全力查找中!
原文赏析:
暂无原文赏析,正在全力查找中!
其它内容:
书籍介绍
范德瓦尔登的《代数学》是现代数学的一部奠基之作,这部书不仅对提高数学家的学识修养有很大意义,对现代数学如扑拓学、泛函分析等以及一些其他科学领域也有重要影响。全书共分两卷,本书是第一卷,分成11章:前5章以最小的篇幅包括了为所有其余各章作准备的知识,即有关集合、群、环、域、向量空间和多项式的最基本的概念;其余各章主要讲述交换域的理论,包括Galois理论和实域。
目录
引言
第1章 数与集合
1.1 集合
1.2 映射,势
1.3 自然数序列
1.4 有限与可数集合
1.5 分类
第2章 群
2.1 群的概念
2.2 子群
2.3 群子集的运算,陪集
2.4 同构与自同构
2.5 同态,正规子群,商群
第3章 环与域
3.1 环
3.2 同态与同构
3.3 商的构成
3.4 多项式环
3.5 理想,同余类环
3.6 整除性,素理想
3.7 Euclid环与主理想环
3.8 因子分解
第4章 向量空间和张量空间
4.1 向量空间
4.2 维数不变性
4.3 对偶向量空间
4.4 体上的线性方程组
4.5 线性变换
4.6 张量
4.7 反对称双线性型与行列式
4.8 张量积,缩并与迹
第5章 多项式
5.1 微分法
5.2 多项式的零点
5.3 内插公式
5.4 因子分解
5.5 不可约性判定标准
5.6 因子分解在有限步下的完成
5.7 对称函数
5.8 两个多项式的结式
5.9 结式作为根的对称函数
5.10 有理函数的部分分式分解
第6章 域论
6.1 子体,素体
6.2 添加
6.3 单纯域扩张
6.4 域的有限扩张
6.5 域的代数扩张
6.6 单位根
6.7 Galois域(有限域)
6.8 可分与不可分扩张
6.9 完全域及不完全域
6.10 代数扩张的单纯性,本原元素定理
6.11 范数与迹
第7章 群论续
7.1 带算子的群
7.2 算子同构和算子同态
7.3 两个同构定理
7.4 正规群列与合成群列
7.5 pn阶群
7.6 直积
7.7 群的特征标
7.8 交错群的单纯性
7.9 可迁性与本原性
第8章 Galois理论
8.1 Galois群
8.2 Galois理论的基本定理
8.3 共轭的群、域与域的元素
8.4 分圆域
8.5 循环域与纯粹方程
8.6 用根式解方程
8.7 n次一般方程
8.8 二次、三次与四次方程
8.9 圆规与直尺作图
8.10 Galois群的计算,具有对称群的方程
8.11 正规基
第9章 集合的序与良序
9.1 有序集合
9.2 选择公理与Zorn引理
9.3 良序定理
9.4 超限归纳法
第10章 无限域扩张
10.1 代数封闭域
10.2 单纯超越扩域
10.3 代数相关性与无关性
10.4 超越次数
10.5 代数函数的微分法
第11章 实域
11.1 有序域
11.2 实数的定义
11.3 实函数的零点
11.4 复数域
11.5 实域的代数理论
11.6 关于形式实域的存在定理
11.7 平方和
索引
网站评分
书籍多样性:3分
书籍信息完全性:9分
网站更新速度:4分
使用便利性:5分
书籍清晰度:3分
书籍格式兼容性:7分
是否包含广告:8分
加载速度:3分
安全性:6分
稳定性:3分
搜索功能:7分
下载便捷性:5分
下载点评
- 可以购买(519+)
- 品质不错(450+)
- 在线转格式(505+)
- 体验差(295+)
- 体验还行(214+)
- 中评多(78+)
- 目录完整(347+)
- 无多页(236+)
- 还行吧(422+)
下载评价
- 网友 谭***然:
如果不要钱就好了
- 网友 敖***菡:
是个好网站,很便捷
- 网友 宓***莉:
不仅速度快,而且内容无盗版痕迹。
- 网友 晏***媛:
够人性化!
- 网友 屠***好:
还行吧。
- 网友 国***舒:
中评,付点钱这里能找到就找到了,找不到别的地方也不一定能找到
- 网友 宫***玉:
我说完了。
- 网友 游***钰:
用了才知道好用,推荐!太好用了
- 网友 蓬***之:
好棒good
- 网友 利***巧:
差评。这个是收费的
- 网友 戈***玉:
特别棒
- 网友 汪***豪:
太棒了,我想要azw3的都有呀!!!
喜欢"代数学I"的人也看了
华图教育·2019宁夏公务员录用考试专用教材:申论 下载 115盘 pdf snb 夸克云 tct kindle azw3
益生菌生理功能与健康+益生菌新技术与应用 益生菌分子遗传学与基因工程相关知识和应用技术益生菌研究生理生物学分类鉴定技术方法 下载 115盘 pdf snb 夸克云 tct kindle azw3
海南省2014年会计从业资格无纸化考试**考点题库及上机考试实战系统(配光盘)会计证从业资格考试教材2014 下载 115盘 pdf snb 夸克云 tct kindle azw3
狼之溪2 危机四伏 下载 115盘 pdf snb 夸克云 tct kindle azw3
读图时代·紫砂壶图谱 下载 115盘 pdf snb 夸克云 tct kindle azw3
建筑材料(第3版) 编者:张黎//周岚//祝叶|责编:戴坚敏 东南大学 【新华书店正版图书书籍】 下载 115盘 pdf snb 夸克云 tct kindle azw3
【正版新书】牛津比较政治学手册 下载 115盘 pdf snb 夸克云 tct kindle azw3
浊血 下载 115盘 pdf snb 夸克云 tct kindle azw3
(14秋)新编能力拓展练习九年级上语文(语文版) 下载 115盘 pdf snb 夸克云 tct kindle azw3
水性涂料树脂合成 下载 115盘 pdf snb 夸克云 tct kindle azw3
- 社区管理(第二版) 下载 115盘 pdf snb 夸克云 tct kindle azw3
- 2018银行从业专业人员职业资格考试辅导初/中级专用教材:个人贷款(初、中级适用) 下载 115盘 pdf snb 夸克云 tct kindle azw3
- 【正版库存轻度瑕疵】行政管理学/新编公共管理教学丛书 下载 115盘 pdf snb 夸克云 tct kindle azw3
- 福建省天利中考38套2024福建省中考试题精选政治/思想品德 附详解答案 天利38套2023福建省中考各市中考道德与法治真题及模拟试题 下载 115盘 pdf snb 夸克云 tct kindle azw3
- 埃及纤体肚皮舞 下载 115盘 pdf snb 夸克云 tct kindle azw3
- [选4本38元]古文观止 青少年版美绘插图精读版 带批注、解析、读后感、阅读理解真题演练 学生版课外阅读丛书经典名著 下载 115盘 pdf snb 夸克云 tct kindle azw3
- 消费者行为学 下载 115盘 pdf snb 夸克云 tct kindle azw3
- 专门用途汉语教学 下载 115盘 pdf snb 夸克云 tct kindle azw3
- 48天突破托业800分(阅读篇21天) 下载 115盘 pdf snb 夸克云 tct kindle azw3
- 德凯奥特曼拼音认读故事11 繁荣的代价 下载 115盘 pdf snb 夸克云 tct kindle azw3
书籍真实打分
故事情节:3分
人物塑造:7分
主题深度:5分
文字风格:3分
语言运用:3分
文笔流畅:8分
思想传递:3分
知识深度:7分
知识广度:5分
实用性:6分
章节划分:7分
结构布局:8分
新颖与独特:3分
情感共鸣:9分
引人入胜:4分
现实相关:8分
沉浸感:5分
事实准确性:6分
文化贡献:9分